Acknowledgements

UNSW: Ali Dorri, Sidra Malik, Chuka Oham, Pooja Gupta, Sanjay Jha, Joe Dong

Data61 CSIRO: Raja Jurdak

TCS Australia: Praveen Gauravaram

Virtual Vehicle Center/TU Graz: Marco Steger

Pontifical Universidade Catolica do Rio Grande do Sul: Regio Michelin, Roben Castagna Lunardi, Avelino Francisco Zorzo
I think we should build a blockchain.

Uh-oh.

Does he understand what he said or is it something he saw in a trade magazine ad?

What color do you want that blockchain?

I think mauve has the most RAM.
Cyberphysical = tight conjoining of and coordination between computation and physical resources
Internet of Shit

@internetofshit

Obviously the best thing to do is put a chip in it. Tips: internetofshit@gmail.com / Also on FB: facebook.com/internetofshit

In your stuff

Joined July 2015

Pinned Tweet

Internet of Shit @internetofshit · 3 Jul 2015

The Internet of Shitty Things is here. Have all of your best home appliances ruined by putting the internet in them!
THE INTERNET OF THINGS
An Explosion of connected possibility

Source: Intel
BY 2020

AVG. INTERNET USER 1.5 GB OF TRAFFIC / DAY
AUTONOMOUS VEHICLES 4 TB OF DATA / DAY
CONNECTED AIRPLANE 5 TB OF DATA / DAY
SMART FACTORY 1 PB OF DATA / DAY
CLOUD VIDEO PROVIDERS 750 PB OF VIDEO / DAY

THE COMING FLOOD OF DATA

Source: Intel
Current IoT Ecosystems

3 Tiers:

- Low-power IoT devices
- Gateway
- Cloud
Centralization does not scale

Centralised brokered communication models based on the client-server paradigm

All devices are identified, authenticated and connected through cloud servers

Often, two IoT devices sitting next to each other will communicate through the Internet
Security and privacy is a significant challenge.

Mirai botnet, a DDoS nightmare turning Internet of Things into Botnet of things

Source: Hackread

Yesterday’s DDoS attack on Dyn’s DNS was like an earthquake that was felt worldwide when the top and most visited sites on the Internet went offline for hours. Although it is unclear who was behind this attack the security researchers are linking the Mirai DDoS botnet malware to this attack.

If you don’t know what Mirai is then let us tell you. It is the same botnet that was behind the DDoS attacks on Krebs on security blog and the OVH hosting website a couple of weeks back. The attack on Krebs’s website was 665 GBPS whilst OVH suffered Internet’s largest ever DDoS attacks of 1 TBPS in which 145,000 hacked webcams were used.

Mirai uses Internet of Things (IoT) devices like routers, digital video records (DVRs), and webcams/security cameras, enslaving vast numbers of these devices into a botnet, which is then used to conduct DDoS attacks.

Source: Hackread, Oct 2016
Hackers remotely kill a Jeep on the highway—with me in it

Data Silos

• Isolated data silos

• We have limited control over our data and how it is used

• We have to trust the cloud and application providers

• This problem will exacerbate as IoT devices collect highly personal data
Facebook now says privacy scandal affected up to 87M

By Nicolas Vega

April 4, 2018 | 3:01pm | Updated

Source: New York Post
Challenges facing CPS

- Heterogeneity in device resources
- Multiple attack surfaces
- Scale
- Centralization
- Lack of control over how data is shared/used and lack of auditability
- Complex interactions of different OS/software stacks/hardware
- Poor implementation of security/privacy mechanisms
- ……..
IS THERE ANOTHER WAY FORWARD?
BLOCKCHAIN IS THE ANSWER
1. Alice sends Bob some bitcoins in a digitally signed transaction.

2. The transaction is broadcast to the entire network.

3. Miners around the world race each other to solve a “Proof of Work” puzzle.

4. Winner combines pending transactions into a “block” & collects fees. This happens every ~10 minutes.

5. The new block is broadcast to the entire network and added to the “chain”.

6. In case of conflicts, the longest chain wins; this results in consensus on which blocks are on the chain.

7. Any transaction that is 3-4 blocks into the blockchain cannot, for all practical purposes, be reversed.

8. Bob can use wallet software to verify the transaction doesn’t involve Alice “double spending” her money.

Inventor: Satoshi Nakamoto
https://bitcoin.org/bitcoin.pdf
Blockchain Data Structure

Each transaction is a digitally signed set of input and output addresses.

Each block is a collection of transactions.

Proof of Work: A miner must find a “nonce” such that the hash of a block contains a certain number of leading zeros.

Within each block, the transactions are stored in the form of a Merkle tree which allows quick verification of (non) membership.
A Bitcoin “Mine”
Merkle Tree

Transactions Hashed in a Merkle Tree
Salient Features

• Distributed Nature

• Chronological and Time stamped Records

• Immutability

• Auditability

• Cryptographically Sealed
Types of Blockchains

<table>
<thead>
<tr>
<th>Permissionless</th>
<th>Permissioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public</td>
<td>Private / Consortium / Public</td>
</tr>
<tr>
<td>Anonymous users</td>
<td>Identified users</td>
</tr>
<tr>
<td>Slow</td>
<td>Fast</td>
</tr>
</tbody>
</table>

- Proof of work, Proof of stake, Proof of importance, Proof of time elapsed
- Examples: Bitcoin, Ethereum, NEM, IOTA

- PBFT, RAFT, PoET
- Examples: Hyperledger, R3 (Corda), Ripple, Quorum
So is Blockchain indeed the answer?

I'm not an engineer, so this might be a dumb question.

But why can't we 3-D print a blockchain and HTML it into a Bitcoin?

Alice can answer that.
1 Internet of Things
Motivating Example
Motivating Example
Challenges of adopting blockchain in IoT

Complex Consensus Algorithms

Scale and associated overheads

Latency

Throughput

Complex security mechanisms (e.g. for preventing double spending) may not be relevant

Incentives
Lightweight Scalable Blockchain (LSB) for IoT

Overlay network comprised of IoT devices, gateways, service provider servers, cloud storage

Nodes organised as clusters and cluster heads responsible for managing the distributed ledger

Number of optimizations to fit the IoT context

• Distributed time-based consensus
• Distributed trust
• Distributed throughput management

Some fundamental concepts

Separation of transaction traffic and data flow and the data/control plane

IoT device data is stored off-the-chain
- Cloud storage
- Local storage (where relevant)

Overlay Block Manager (OBM): Entity responsible for managing the blockchain
- Generation, verification and storage of individual transactions and blocks of transactions
- Access control
Overlay

Each node is known by a public key (changeable for anonymity)
Nodes organised as clusters and each cluster elects a cluster head (CH) -> OBM
Transactions are digitally signed using cryptographic hash functions
 – Single Signature Transactions
 – Multiple Signature Transactions (m out of n)
Separate transaction ledger per node
Limiting Spam Accounts

Genesis transaction created using one of the following approaches:

- Certificate Authorities: Leverages PKI. A CA ratifies the node’s PK which is included in the genesis transaction.

- Burn coin in Bitcoin: A transaction created in the Bitcoin blockchain by destroying a specific amount of coin. The genesis transaction uses the same PK as the burn transaction.

OBMs verify validity in either approach
Transaction Vocabulary

Genesis: starting point of the ledger

Store: used for storing data in the cloud storage

Access: to request access to stored data

Monitor: to enable real-time access to data from a device

Transaction flow is distinct from data flow
• Transactions are broadcast to all OBMs while data is unicast along optimal routes
Smart Contracts for D2D Interaction

Manifest **If this then that** interaction

Once mined, the smart contract cannot be modified, thus the participants can trust the contract

Each contract can perform pre-defined actions based on the variables passed to its through transactions

For example:

```solidity
function test (uint mode) returns (address action){
    mode = msg.value;  // here it reads the value of the sensor from the received transaction
    if (mode == ‘1’) {
        actuator.action= 1;
    } else {
        actuator.action= 0;
    }
```
Who can access what?

OBM maintains an Access Control List (ACL) consisting of requester/requestee PK pairs

• Key list updated by cluster members

When a transaction arrives at an OBM, the key list is checked to determine the destination of the transaction

• if the requestee is not part of the OBMs cluster, then the transaction is broadcast to other OBMs
Time-based Consensus

Time-based block generation: One block per consensus-period

A random waiting time before block generation

A new block is broadcast to all other OBMs

Neighbours verify that one block is generated per consensus-period

• Non-compliant blocks are dropped and trust associated with the responsible OBM is decreased
Block Verification

Verifying all transactions in a block is computationally demanding

A portion of the transactions are verified as the OBMs build up trust in one another

Distributed trust

- Direct evidence – if OBM Y has verified a block generated by OBM X
- Indirect evidence – If OBM Z (not Y) has verified the new block generated by OBM X

<table>
<thead>
<tr>
<th></th>
<th>Number of previously validated blocks</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct evidence</td>
<td>Needs to validate</td>
<td>80%</td>
<td>60%</td>
<td>40%</td>
<td>30%</td>
<td>20%</td>
</tr>
<tr>
<td>Indirect evidence</td>
<td>Percentage of OBMs signed the block</td>
<td>20%</td>
<td>40%</td>
<td>60%</td>
<td>80%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Needs to validate</td>
<td>80%</td>
<td>75%</td>
<td>70%</td>
<td>60%</td>
<td>40%</td>
</tr>
</tbody>
</table>
Distributed Throughput Management

Throughput = average number of transactions appended to the BC per second

Classical consensus algorithms limit the throughput (e.g., Bitcoin throughput is limited to 7 transactions per second)

Measures the utilization α (ratio of # of transactions generated to the # of transactions appended) in each consensus period

Goal: $\alpha_{\text{min}} \leq \alpha \leq \alpha_{\text{max}}$

$$\alpha = \frac{N \times R \times \text{Consensus-period}}{T_{\text{max}} \times M}$$

Tune two parameters to guarantee the above condition

- Consensus-period
- The number of OBMs (M)
Security Analysis

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Employed method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidentiality</td>
<td>Encryption can be used for the data</td>
</tr>
<tr>
<td>Integrity</td>
<td>Each transaction includes a hash of all other fields contained in the transaction</td>
</tr>
<tr>
<td>Availability</td>
<td>An OBM sends a transaction to its cluster members only if a key contained in the transaction matches one of the entries in its keylist. This ensures that the cluster members only receive transactions from authorized nodes.</td>
</tr>
<tr>
<td>Authentication</td>
<td>Each node should have a stored genesis transaction in the BC to be authenticated. As transactions are chained to the genesis transaction, a node is authenticated when it has the private key corresponding to the output PK of a transaction stored in the BC</td>
</tr>
<tr>
<td>Non-repudiation</td>
<td>Transactions are signed by the transaction generator to achieve non-repudiation. Additionally, all transactions are stored in the BC, so involved parties in the transaction can deny their complicity in a transaction</td>
</tr>
</tbody>
</table>
Performance Evaluation

• Simulations:
 o Smart home tier:
 o Cooja Simulator
 o 6LoWPAN
 o Focus on overheads incurred by the CC

 o Overlay tier:
 o Ns3 Simulator
 o 50 node overlay network with 13 OBMS (default), 5 requesters generating 4 transactions per second
Resilience to Attacks

- LSB packet overhead
- Bitcoin packet overhead
- Attack success percentage
IoT Data/Service Marketplace
I've hired a consultant to help us evolve our products to use blockchain technology.

Blockchain! Blockchain! Blockchain! Blockchain! Blockchain!

It's as if you're a technologist and a philosopher all in one!

Blockchain. Sidechains.
2 CONNECTED VEHICLES
Connected and Automated Vehicles

 Estimated Global Installed Base Of Cars With Self-Driving Features

All Levels

Five-Year (2015-2020)
CAGR 134%
Connected and Automated Vehicles

Wide array of ECUs, sensors and connected technologies for better perception of the environment and facilitate independent decision making.
Uber halts self-driving car tests after death

20 March 2018

Uber said it is suspending self-driving car tests in all North American cities after a fatal accident.

A 49-year-old woman was hit by a car and killed as she crossed the street in Tempe, Arizona.

While self-driving cars have been involved in multiple accidents, it is thought to be the first time an autonomous car has been involved in a fatal collision.

Uber said that its "hearts go out to the victim's family".

Source: BBC
Who’s to blame when driverless cars have an accident?

March 20, 2018 4.19am GMT

Autonomous vehicles are information-rich platforms thanks to the range of sensors on board that track, monitor and measure everything. Uber

The news that an Uber self-driving vehicle has killed a pedestrian in the US has made headlines around the world.

It’s a reminder that the era of self-driving cars is fast approaching. Decades of research into advanced sensors, mapping, navigation and control methods have now come to fruition and autonomous cars are starting to hit the roads in pilot trials.
Liability Attribution is Complex

- Product Liability: blame is assigned to an auto manufacturer for product defect

- Service Liability: identified last action of a service technician caused the accident

- Negligence Liability: vehicle owner failed to adhere to instructions and is responsible

Blockchain Framework for Insurance Claims and Adjudication (B-FICA)

Transaction Vocabulary

• Event Safety Evidence (ESE): records unexpected vehicular behavior

• Primary Evidence Transaction (PET): records data describing the accident

• Notification Evidence Transaction (NET): records interaction between manufacturer/service technician with CAV

• Execution Transaction (ET): records the CAV’s response to NET

• Request Transaction (RT): for requesting specific data for further investigation
Illustrative Example: Two Car Collision

Phase 1: CAV(1,2) generates collision related data and sends primary evidence (PEV) to OP-BC 1. CAV3 sends to OP-BC 2.

Phase 2: OP-BC (1,2) validators (Insurance companies, Service technicians and Auto-manufacturers) verify and validate PEV in OP-BC dBlock.

Phase 3: DP-BC validators (Legal authority and Government transport authority) analyse RET and provide feedback to auto manufacturers and insurance companies.
SUPPLY CHAINS
HORSE MEAT IS FOUND IN TESCO BURGERS

Supermarkets clear shelves Inquiry at supply plants
Salmonella outbreak linked to Mexican papaya sickens more than 100 in US

Consumers warned to avoid maradol papayas from Mexico after victims fall sick in 16 states from eating fruit traced to farm in the Yucatan peninsula

▲ The US Centers for Disease Control and Prevention is currently recommending consumers avoid maradol papayas from Mexico. Photograph: Alamy

More than 100 people have contracted salmonella after eating papaya traced to a farm in southern Mexico, according to US public health officials.

The 106 victims of the outbreak have fallen sick in 16 states and 35 cases were serious enough to require hospitalization, the US Centers for Disease Control and Prevention (CDC) said on its web page dedicated to the outbreak. One person in New York City has died.

Papaya traced to the Carica de Campeche farm in Campeche, Mexico, appears to be the likely source, the Food and Drug Administration (FDA) said. The farm is located on the Gulf of Mexico side of the Yucatan Peninsula.
Supply Chains

- A system of organizations, people activities, involved in the distribution of raw material or finished goods
 - Food
 - Pharmaceutical
 - Aerospace and Defense

- State-of-the-art traceability systems
 - Organisational silos
 - Prone to mishandling, counterfeiting
 - Consumer access to data often not available or incomplete

Product Story: Necessitates data collection from these repositories and to ensure integrity of data
How can a blockchain help?

• Origin of raw materials can be recorded

• Physical handover of items along the FSC can be tracked

• IoT sensor data streams can be integrated

• Hazard Analysis and Critical Control Points (HAACCP) verification can be achieved

• Customers can access product story

• Speed up investigation of sickness outbreaks
A Blockchain Solution

Consortium Blockchain

Governance Board
• Access Control

Access Control

<table>
<thead>
<tr>
<th>Members</th>
<th>Transaction Type</th>
<th>Global ledger at BCglob</th>
<th>Local Ledger</th>
<th>Modify Access Rights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Participating</td>
<td>Create</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Transfer</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>produce</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Participating</td>
<td>Create</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Transfer</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>produce</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Governance Board</td>
<td>Create</td>
<td>x</td>
<td>x</td>
<td>✓ By majority vote</td>
</tr>
<tr>
<td></td>
<td>Transfer</td>
<td>x</td>
<td>x</td>
<td>✓ By majority vote</td>
</tr>
<tr>
<td></td>
<td>produce</td>
<td>x</td>
<td>x</td>
<td>✓ By majority vote</td>
</tr>
<tr>
<td>Validators</td>
<td>Create</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Transfer</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>produce</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
</tbody>
</table>
Tiered Network Architecture

3 Tiers

Geographical Sharding

Simplified Consensus
Transaction Flow from Farm to Fork

Create: Commodity existence
Transfer: Asset transfer
Produce: Links between multiple previous chains at the manufacturer

Dairy Farmer: Bob

Transaction Type: Create
TID: 043
Prev_TID: 0
Transaction Payload
Sensor reading: TTI, GPS
Sensor log hash

Dairy Farmer–Supplier

Transaction Type: Transfer
TID: 123
Prev_TID: 043
Transaction Payload
Sensor reading: TTI, GPS
Sensor log hash

Supplier - Nestle

Transaction Type: Transfer
TID: 556
Prev_TID: 123
Transaction Payload
Sensor reading: TTI
Sensor log hash

Transaction Type: Transfer
TID: 6663
Prev_TID: 6663
Transaction Payload
Sensor reading: TTI
Sensor log hash

Nestle – J.S Transport

Transaction Type: Transfer
TID: 742
Prev_TID: 6663
Transaction Payload
Sensor reading: TTI
Sensor log hash

Transaction Type: Transfer
TID: 5643
Prev_TID: 742
Transaction Payload
Sensor reading: TTI
Sensor log hash

Manufacturer: Nestle

Cocoa Farmer: George

Transaction Type: Create
TID: 233
Prev_TID: 0
Transaction Payload
Sensor reading: TTI, Hum, GPS
Sensor log hash

George–Nestle

Transaction Type: Transfer
TID: 876
Prev_TID: 233
Transaction Payload
Sensor reading: TTI, Hum
Sensor log hash

Return Provenance Information:
Cocoa Farmer: George, Location: XYZ
Dairy Farmer: Bob, Location: XYZ

Dairy Chocolate at CMart Shelf
WE’VE GOT ISSUES
Centralisation of Power

There is a tendency to bigger pool sizes to reduce variance of earnings from mining. This could be viewed as a failure of the protocol.
Blockchain Vulnerabilities

'$300m in cryptocurrency' accidentally lost forever due to bug

User mistakenly takes control of hundreds of wallets containing cryptocurrency Ether, destroying them in a panic while trying to give them back.

A hacker stole $31M of Ether—how it happened, and what it means for Ethereum

Bitcoin Worth $72M Was Stolen in Bitfinex Exchange Hack in Hong Kong

More than 400,000 personal computers have been attacked in a large-scale attempt to distribute cryptocurrency mining malware. The hackers used sophisticated trojans to infect PCs mostly in Russia, but also in Turkey, Ukraine, and other countries. The coordinated assault lasted more than 12 hours.

CryptoShuffler: Trojan stole $140,000 in Bitcoin

October 31, 2017
Art. 17 GDPR

Right to erasure (‘right to be forgotten’)

(1) The data subject shall have the right to obtain from the controller the erasure of personal data concerning him or her without undue delay and the controller shall have the obligation to erase personal data without undue delay where one of the following grounds applies:

a) the personal data are no longer necessary in relation to the purposes for which they were collected or otherwise processed;

b) the data subject withdraws consent on which the processing is based according to point (a) of Article 6(1), or point (a) of Article 9(2), and where there is no other legal ground for the processing;

c) the data subject objects to the processing pursuant to Article 21(1) and there are no overriding legitimate grounds for the processing, or the data subject objects to the processing pursuant to Article 21(2);

d) the personal data have been unlawfully processed;

e) the personal data have to be erased for compliance with a legal obligation in Union or Member State law to which the controller is subject;

f) the personal data have been collected in relation to the offer of information society services referred to in Article 8(1).
The Blockchain-GDPR Paradox

The General Data Protection Regulation, or GDPR in short, will become enforceable from 25 May 2018. Fact is, this will have (and already has) a major impact in organisations both large and small. In this post I will highlight some topics on how GDPR relates to blockchain technology. Especially on how GDPR has the opposite effect in some ways, when it comes to making Blockchain Architecture compliant with GDPR.
Memory Optimized & Flexible Blockchain (MOF-BC)

- Enables participants to remove or summarize their transactions and age their data and to exercise the "right to be forgotten"
- User-Initiated (UIMO) or SP-Initiated Memory Optimization (SIMO)
- Option to offload optimization to the network (NIMO)
- Memory Optimization Modes (MoMs)
 - Temporary
 - Summarizable
 - Permanent
- Modification to the way the block hash is computed
- Batch removals for optimizing overheads associated with removal of transactions
- Rewards offered to nodes for employing optimization

A. Dorri, S. S. Kanhere, R. Jurdak, MOF-BC: A Memory Optimized and Flexible BlockChain for Large Scale Networks (under review),
https://arxiv.org/abs/1801.04416
What about performance?

BLOCKBENCH: A Framework for Analyzing Private Blockchains

Tien Tuan Anh Dinh‡ Ji Wang‡ Gang Chen‡ Rui Liu‡ Beng Chin Ooi‡ Kian-Lee Tan‡
‡ National University of Singapore § Zhejiang University
‡ {dinhhtta, wangji, liur, ooibc, tankl}@comp.nus.edu.sg § cg@zju.edu.cn

Trust?

Blockchain is not only crappy technology but a bad vision for the future

- People have made a number of implausible claims about the future of blockchain, based on a misunderstanding of what a blockchain is.
- Tampering with data stored on a blockchain is hard, but it’s false that blockchain is a good way to create data that has integrity.
- Blockchain systems are supposed to be more trustworthy, but in fact they are the least trustworthy systems in the world.

“Projects based on the elimination of trust have failed to capture customers’ interest because trust is actually so damn valuable. A lawless and mistrustful world where self-interest is the only principle and paranoia is the only source of safety is a not a paradise but a crypto-medieval hellhole.”

“As a society, and as technologists and entrepreneurs in particular, we're going to have to get good at cooperating—at building trust, and, at being trustworthy. Instead of directing resources to the elimination of trust, we should direct our resources to the creation of trust—whether we use a long series of sequentially hashed files as our storage medium or not.”

Source: CNBC
Privacy

• Particularly an issue with public blockchains

• Cryptographically secure obfuscation (holy grail) is difficult

• Possible Approaches:

 • Secure Multi-party Computation

 • Zero Knowledge Proofs (SNARKs in particular)
Internet of Blockchains

Cross-industry and cross-chain interoperability for broader application scenarios

Interledger Protocol (ILP): Open standard for interledger token exchange

Cosmos: multiple disparate blockchains (zones) with a central hub for coordination
Funds raised via token sales
$318,381,050

Source: Elementus.io
Why are So Many ICOs Failing?

The rise of cryptocurrency prices in late 2017 not only brought a lot of attention to some of the top, well-established cryptocurrency projects like Bitcoin and Ethereum but also brought attention to many new projects launching ICOs.

Overall, ICOs improved in terms of the number of investors and the amount of investments. According to some estimates, ICO fundraising totaled **over 5.6 billion USD** last year. Despite this success, a few projects have either stopped responding to questions from the public or have collapsed altogether. It’s important to take an in-depth look at the current status of ICO investing and determine whether recent trends of ICO failures will remain prominent throughout 2018 and beyond.

The quality of an ICO whitepaper is crucial in deciding whether or not a project will have long-term potential. If you’d like to learn more about how to read an ICO whitepaper, [here’s our guide](http://www.coincentral.com) to help you get started.

Looking at the Data

According to a recent study, 418 of the 902 new crowdsales (46%) listed on Tokendata for 2017, have already failed. 142 failed during the ICO stage, 276 projects failed post-ICO.

The alarming thing to note about this statistic is that these are only the projects that have already failed. An additional 113 ICOs are currently deemed to be ‘unresponsive’ to questions from the public on social media. This could equal to a lot of additional failures from the 2017 cohort of ICOs in the near future.

Source: www.coincentral.com
More than 10 percent of $3.7 billion raised in ICOs has been stolen: Ernst & Young

NEW YORK (Reuters) - More than 10 percent of funds raised through “initial coin offerings” are lost or stolen in hacker attacks, according to new research by Ernst & Young that delves into the risks of investing in cryptocurrency projects online.

Source: Wired

Source: zdnet
The iced tea company that added ‘Blockchain’ to its name and doubled its share price could now be delisted from the Nasdaq

By OLGA KHARIF Bloomberg
Fri., Feb. 16, 2018

Long Blockchain Corp. is poised to be delisted, a fate the iced-tea company temporarily avoided by jumping in on the cryptocurrency craze.

The unprofitable beverage maker formerly known as Long Island Iced Tea Corp. got a notice that its shares would be removed from the Nasdaq, according to a filing Friday. Its market value has dropped back below the exchange’s $35-million threshold after surging in December, when the company announced it was acquiring 1,000 bitcoin-mining machines and changing its name.
Conclusions

Still early days, but potential for blockchain technologies for next-generation decentralized networks and applications is clear.

Many interesting directions:
- Mathematical modeling of blockchains
- Ways to improve scalability and performance
- New architectures
- New applications
- Smart(er) contracts with machine learning?

Research opportunities pertaining to security, distributed systems, networks, software engineering, databases, cloud computing, financial engineering, network economics, Internet of things,…
Hey Doc, what did you learn in the future?

Buy Bitcoins Marty!!!
“That's all Folks!”

QUESTIONS?

W: www.salilkanhere.net, E: salil.kanhere@unsw.edu.au

Distributed Throughput Management

![Graph showing the relationship between Consensus-period (seconds), Transactions per second, and Simulation Time (seconds). The graph includes lines for Consensus-period, Transactions, and Computing α.](image-url)
Discussion

Auditability
• All transaction records are permanently stored
• Records can be used for audits, criminal investigations, etc.

Incentives for OBMs
• Implicit rewards in the form of reputation
• Advertising for service/cloud providers
Proof of Work

• To add a new block, the miner has to find a nonce such that:

\[H(\text{nonce}||H_{\text{previous}}||\text{trans}_1||\text{trans}_2|| \ldots ||\text{trans}_n) < target \]

where:

- \(H \): computationally hard hash function
- \(target \): subset of hash function output
- \(trans_i \): hash of the i-th transaction in the block

• The first node to find the nonce can mine the block into the blockchain and receive fees as incentive

• The chain with the most cumulative POW is always considered the valid chain
The “block chain”

Each block contains a timestamp, a nonce (for Proof of Work) and the hash value of the previous block.

The linked blocks form a chain.
Transaction Flow from Farm to Fork

Create: Commodity existence
Transfer: Asset transfer
Produce: Links between multiple previous chains at the manufacturer

<table>
<thead>
<tr>
<th>Data</th>
<th>Transaction Type: Create</th>
<th>Transaction Type: Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Mat</td>
<td>Transaction ID</td>
<td>Batch ID</td>
</tr>
<tr>
<td>origin</td>
<td>Previous Transaction ID=0</td>
<td>Data</td>
</tr>
<tr>
<td>type</td>
<td></td>
<td>Sender's Signature</td>
</tr>
<tr>
<td>weight</td>
<td></td>
<td>Source's Public Key</td>
</tr>
<tr>
<td>timestamp</td>
<td></td>
<td>Transaction ID</td>
</tr>
<tr>
<td>Sensor Data</td>
<td></td>
<td>Previous Transaction ID</td>
</tr>
<tr>
<td>HACCP Checks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data		
Input	Mapping	Quality Checks
Batch ID	Product identifier	Sensor/HACCP checks

Transaction Type: Produce
- Prev Tr ID
- Data
- Sender's Signature
- Sender's Public Key
- Transaction ID
- Previous Transaction ID

Transaction Type: Transfer
- Batch ID:
- Data: IP: Value: HACCP:
- Sender's Signature
- Sender's Public Key
- Receiver's PK
- Receiver's Signature
- Transaction ID
- Previous Transaction ID

Diagrams showing flow from primary producer to retailer via manufacturer and logistics.
3 ENERGY TRADING
Peer to Peer Energy Trading

Increased integration of distributed energy resources
Traditional Consumers -> Prosumers
Issues

Centralisation

• Energy distribution companies remain single point of failure

Privacy

• Distribution companies may track energy production and consumption of the users

Security

• Energy solutions are getting connected to the Internet which opens up new cyber security threads
Liability Attribution Framework
Types of Blockchains

- **Permissionless**
 - Proof of work, Proof of stake, Proof of importance, Proof of time
 - Examples: Bitcoin, Ethereum, NEM, IOTA

- **Permissioned**
 - PBFT, RAFT, PoET
 - Examples: Hyperledger, R3 (Corda), Ripple, Quorum

Anonymous vs **Identified** users

Public vs **Private / Consortium / Public**